Final Project: Fantasy Sports Team Management System Documentation
DEV422

Team 3: Oscar Moreno, Ying Jiang & Jiwon Oh

1. Architecture Diagram

Azure Web App Azure SQL Server

Team
management
Service

[» Azure Team DB

Frontend/User — API Gateway — (to all services)

request teanj data « Team Management Service — Azure SQL Database.
! - »| Management Azure Player DB « Player Management Service — Azure SQL Database.
—— |Ul/index himl : Ly Senice » Performance Tracking Service — Azure SQL Database.
Actor
Periormance
Trancking Azure PEréormance
Service
Ul Layer:

o The user interacts with a web interface (/index.html) to perform actions like
managing teams, players, and competitions.

Team Management Service:
o Handles team-related operations such as creation, updates, and fetching rosters.
o Stores data in Azure Team DB and fetches player details from the Player
Management Service.

Player Management Service:

o Manages player-related operations like drafting and releasing players.
o Stores player data in Azure Player DB and communicates only through its APIs.

Performance Management Service:

o Simulates competitions and updates player performance stats.
o Calls APIs from both the Team Management and Player Management services to

retrieve required data and stores stats in Azure Performance DB.

Database Layer:

e Each service has its own database in Azure SQL to maintain modularity. Services do
not access each other’s databases directly.

2. APl Documentation

TEAM_SERVICE_URL: https://fantasysportsteammanagementsystem.azurewebsites.net
PLAYER_SERVICE_URL: https://player-management-service.azurewebsites.net
PERFORMANCE_SERVICE_URL: https://performance-tracking-service.azurewebsites.net

Team Management Service

Base URL: https://<team-service-url>/api/team

Method Endpoint Description Request Body Response
POST Jcreate Create a new '{| tgan?lName : I{I message":)
team. string" } Team created." }
[{"id":int,
GET / Get all teams. None "teamName":
"string" }]
Update team {"newName": {Mid" int,
PUT Jupdate/{id} “string”) "teamName":
name. g "String" }
Get team {"teamName":
GET /{teamld}/roster roaster in a None "string", "players":
team. (1}

https://fantasysportsteammanagementsystem.azurewebsites.net
https://player-management-service.azurewebsites.net
https://performance-tracking-service.azurewebsites.net

Player Management Service

Base URL: https://<player-service-url>/api/player

Method Endpoint Description Request Body Response
Get all players
GET /getTeamRoaster . play {“teamld”=int} ["teamPlayers": [1]
In a team.
Draft a player " " " "
POST Jdraft play { player"Id. int, { "message Player"
to a team. teamld": int } drafted successfully." }
REIease a { n | |dl| H t { n n llPl
playerld": int, message": "Player
POST [release player from a "teamld": int } released successfully." }
team.

Performance Tracking Service

Base URL: https://<performance-service-url>/api/competitions

Method Endpoint Description Request Body | Response
. [{"id":int, "teamlId": int,
Simulates "teamName": "string",
competition and " "

POST /simulate P None "playerld |n|t', N
updates playerName": "string",
performance stats "points": int, "assists": int,

"fouls":int }]

[{"id":int, "teamld": int,
Retrleves a” "teamName": "String",
performance stats “playerld®int,

GET / th undated None playerName": "string",
with up att.a team "bosition": "string"
and player info. "points": int, "assists": int,

"fouls":int }]
Updates the {"points": int,

PUT /{id} performance stats "assists": int, No Content

for a specific record. | "fouls":int}

3. Guide for Testing Services

(Ensure all services are running on Azure App Service and use Azure SQL as the centralized
database. Postman for API testing, browser for Ul testing, azure SQL Database for database
verification.)

e Testing Services Independently:

e Team management Service (TEAM_SERVICE_URL):
Create Team: POST /api/team/create by sending a new team name.
Update Team: PUT /api/team/update/{id} with a new team name.
Retrieve All Teams: GET /api/team to list all available teams.
Fetch Team Roster: GET /api/team/{teamld}/roster to retrieve player

detail for a team.
e Player Management Service (PLAYER_SERVICE_URL):
e Draft Player: POST /api/player/draft by sending a player id and team id.
e Release Player: POST /api/player/release with a player id.
e Fetch Team Roaster: GET /api/player/getTeamRoaster?teamld={teaml|d}

for the roster of a specific team.
e Performance Tracking Service (PERFORMANCE_SERVICE_URL):

e Simulate Competition: POST /api/competitions/simulate to update

player performance stats.
e Retrieve All Stats: GET /api/competitions for a complete list of
performance stats.

e Update Stat: PUT /api/competitions/{id} with updated performance data.
¢ Testing Services in Combination:

e Test Team Management Service with Player Management Service:
GET /api/team/{teamld}/roster and verify that player details come from GET
[api/player/getTeamRoaster?teamld={teaml|d}.

e Test Performance Tracking Service with Player and Team Services:

Check Simulate performance’s team names using
GET /api/team/{teamId}/roster.
Ensure player name and position integrate correctly using

GET /api/player/getTeamRoaster?teamld={teamid}.

